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ABSTRACT

New forms of cancer cell identification coupled with faster detection and better accuracy may enhance diagnostic
capabilities. The purpose of this study is to improve recognition of minimal residual disease from peripheral blood
samples. Spectral images are generated by optical microscopy using filtered broadband visible light elastically
scattered from human blood and cancer cells. Exogenous tags, like CD markers may introduce a label bias and
are not required. A training cell may be validated without detailed knowledge of intra-cellular spectra used to
classify random cells. Spectral object classification is scalable to any number of cell types. Small samples of
erythrocytes, leukocytes, Jurkat cancer and non-small lung cell adenocarcinoma are accurately classified and
associated with unique spatial-spectral characteristics.
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1. INTRODUCTION

Advanced methods to identify abnormal cells in the blood, bone marrow, or other tissue have enhanced diagnostic
and prognostic capabilities with improved risk assessment, most notably for breast cancer. Detection of minimal
residual disease by flow cytometry has become a powerful predictor of outcome in patients with hematologic
malignancies and is currently being used to tailor therapy for children and adults with acute lymphoblastic
leukemia. Novel spectral-based methods may provide complementary capabilities by identifying rare cells in
large populations. There is evidence that visible light spectra can be used to distinguish cancer from normal
cells1,2 and fetal- from adult-nucleated red blood cells.3 In some cases if circulating tumor cells can be detected
at low concentration peripheral blood tests might replace or ameliorate invasive medical procedures.

In this paper methods to classify cells and characterize intra-cellular spectral structure are described. A
spectral image microscope illuminates a dispersed thin film sample with broadband light optics filtered by a
monochromator over narrow bands in the visible range. A high throughput system architecture is described
in Ref. 4. Small samples of erythrocytes (Rbc), leukocytes (Wbc), Jurkat T-lymphocyte cancer (Jur) and
adinocarcinoma (H1975) are used as examples.

2. OVERVIEW

Cell classification is accomplished in a supervised machine learning environment. A field-of-view is rendered as
pixelized intensity measurement spectra from a frame array of monochromatic grey images, Fig. 1. A training
sample selected from a test population of known cell types may be identified from one or more monochromatic
grey images, a color composite, or otherwise substantiated by a verification authority. Samples identified on
a basis separate from constituent measurements allows knowledge about a cell, such as morphology or other
spatial - spectral features, but possibly none about underlying structure interaction with elastically scattered
light spectra.

Training cells are used as a basis for classification, e.g. spectral images of cell A and cell B are used to classify
a random cell Ô, which is assigned to class : A as (Ô : A), class : B as (Ô : B), or an unknown class as (Ô : X)
evaluated as a not A and not B class. This tri-class method scales to (K + 1) cell types associated with K
training samples and a new, untrained, or unknown class.
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Figure 1. Supervised learning with cells rendered and classified from spectral images.

3. BACKGROUND AND PROBLEMS ADDRESSED

Figure 2. Vector spaces, linear functionals, and distributions.

A variety of methods address discrimination or classification of populations, Fig. 2. Algebraic or functional
transformations to a mapped feature or dual space can increase training sample separation and improve binary
decision accuracy. One path maps measurement spectra by an algebra with a product ⊗, such that a class set
A is transformed to a linear scaled (mapped feature) space of p-dimensional scale vectors

Ŷ (A) ≡ λ⊗ {A} = λ⊗ {x̂A} = {λ⊗ x̂}A = {λ1x̂1, . . . , λpx̂p}A. (1)

Statistical hypothesis testing interprets feature space components as class conditional probabilities for pattern
recognition. A functional for each dimension is given by a probability calculated from conditional densities.
A Bayes decision compares a likelihood to a threshold-bias. However, estimates of a multi-variate conditional
density may not be available or difficult to compute, [5, pp.51-55].
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A second path is to make a binary decision, which compares a transformed spectrum dual score D(x̂) to a
threshold-bias (h), e.g. if D(x̂) ≥ h, the spectrum is associated with decision a, (x̂ : a); else (x̂ : b). Linear
transformations map training sample measurement spectra x̂ to a dual score distribution,

D(x̂) = λ · x̂ =

p∑
j=1

λj x̂j (2)

with λ a weight, linear functional, or scale vector depending on the context. A perceptron iteratively param-
eterizes weights and threshold-biases.6 However parameters may not converge or sample order creates several
solutions.5,7

Figure 3. [left] RGB image bright field; [right] Jurkat cell (X0) and background (Y 0) input score histograms.

Discriminating populations is fundamentally a nonlinear problem.8 Neural networks model nonlinearities by
a variety of constraints, interconnections, and states when calculating weights. However, a network architecture
might be difficult to find or scale [9, pp.265-286] and the approach may be less effective if further insight to an
underlying process is desired [10, pg.408]. A support vector machine (SVM) can evaluate a binary decision with
a nonlinear kernel operator K(w, x̂) and weight vector parameter (w) to generate a score distribution,11 e.g. if
K(w, x̂) ≥ h, associate x̂ with decision a (x̂ : a), else (x̂ : b). However, a heuristic kernel selection is required.

Figure 4. [left] dual score histograms for training sample pair: Jurkat cell D0(X0) and background D0(Y 0); [right]
corresponding binary decision error distributions.

It is simpler to make a binary decision using a nonparametric transformation of training samples to dual
score distributions. The problem of poor discrimination associated with linear methods is addressed here by a
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hierarchy of methods summarized as: a minimum error threshold-biases is derived, an iterative and convergent
sieve process generates a binary decision ensemble, and a generalized accuracy measures cell spectra composition.

An example training pair comprises a Jurkat cancer cell (X0) and background sample (Y 0), Fig. 3. An early
method to distinguish two populations maximizes the ratio of mean separation to joint variance.8 A scale vector
λAB = [λ1, · · ·λp]AB is sought to discriminate a training sample pair x̂A = [x̂1, · · · x̂p]A and x̂B = [x̂1, · · · x̂p]B .
A transformation is derived by a linearization condition to increase statistical separation, which produces

λAB = C−1 < x̂A − x̂B > (3)

with scale vector (λAB) components the linear discriminants (λj); the covariance matrix C = [Cjk] = (<
δxjδxk >A + < δxjδxk >B) is averaged over a pooled set of training sample pairs (A) and (B) for within-class

variations (δ̂xj = x̂j− < xj >T ) with class (T = A or B). Covariance matrix stability provides a condition be-
tween measurement dimension (p) and sample size (n), Appendix A. If sampling is sparse, dimensional reduction
may be required. A challenge is that insufficient dimensional reduction can generate an ill-conditioned transfor-
mation, while overcompensation diminishes information. For the cases discussed here, cell spectra dimensional
reduction for measured intensity vectors with (p = 12) components and sample sizes (n) > 50 is not required.

Figure 5. Sieve transforms a training sample pair to a binary decision ensemble (BDE).

Figure 6. (left) a disjoint dual score histogram and (right) normalized binary decision error distribution.

A training sample pair (X0, Y 0), Fig. 3 [right] generates a scale vector (Eq. 3), which transforms cell spectra
(x̂) to a dual score distribution (Eq. 2). Fig. 4 [left] shows transformed distributions D0(x̂A) = λAB · X̂0 and
D0(x̂B) = λAB · Ŷ 0. A nonparametric binary decision uses a threshold-bias and scale vector derived solely from
the training sample pair. A training class binary decision may have two possible outcomes, either a true or a false
value. To accomodate this uncertainty, error distributions of both types are evaluated and the one with fewest
false decisions generates a minimum total error threshold-bias. Total error and false-condition distributions are
related by:

ε(b±) = n[FalseA(b±)] + n[FalseB(b±)] = n(A : b ; b±) + n(B : a ; b±),
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where n(A : b ; b±) and n(B : a ; b±) are numbers of false decision at threshold-bias (b±), Fig. 4 (right).

An iterative sieve process filters false spectra to improve discrimination, Fig. 5. The residual set of true
training class members are input to a next sieve iteration: {x̂ ∈ A : a} = A1 ⊆ A0 and {x̂ ∈ B : b} = B1 ⊆ B0.
Sieving is terminated with disjoint training class subset dual score distributions {D(x̂ ∈ A : a)} ∩ {D(x̂ ∈ B :
b)} = ∅, Fig. 6 (left). A sample pair (A,B) is transformed with j sieve iterations to a binary decision ensemble
BDE(A,B) = {λj , b±j} of scale vectors and minimum error biases. Sample size can bias a decision. Here both
large and small sets are assumed equally important so a size bias correction (normalization) is made. A training
class sample-A spectrum is assigned a weight 1/n(A), resulting in a normalized total error distribution, Fig. 6
(right).

4. SIGNAL PROCESSING

Spectral image signal processing and cell classification share a common problem where distributions may not be
sufficiently distinct. In signal processing, discrimination filters background regions of noninterest prior to render-
ing spectral objects, (cell pixel-spectra). Background from a brightfield (BF) or darkfield(DF) is discriminated
by a training sample pair comprised of one or more cells and regions of non-interest. Subsequently, cell spectral
images are rendered. For classification, the problem is to distinguish one cell type from another. While the two
applications differ in the training samples input and use of the output, they both employ the sieve to transform
a training sample pair to a binary decision ensemble (BDE), Fig. 5.

Figure 7. (left) Bright field-of-view RGB-image and (right) rendered Jurkat cells

Signal processing includes system calibrations, chromatic distortion corrections,4 background discrimination,
and spectral image cell rendering. An example of the latter two are shown in Fig. 7. A training sample pair
taken from a bright field-of-view Fig. 3 (right) is transformed to a disjoint pair of distributions, Fig. 6 (left).
The field-of-view (FOV) Fig. 7 (left) is discriminated by filtering spectra associated with background binary
decisions. The rendered Jurkat cells are shown in Fig. 7 (right).

5. CELL CLASSIFICATION

For classification, training cells are sampled from a known, discriminated and rendered test population, e.g. a
cell pair Jurkat(J1c) and Wbc(W1c) Fig. 8 (left). The sieve generates BDE(J1c,W1c) and disjoint training
class subsamples after eight iterations, Fig. 8 (right.)
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Figure 8. Dark field histograms: (left) input training cells Jur (J1c) and Wbc (W1c) and (right) sieved dual scores.

5.1 Cell partitions

Table 1. Jurkat training cell tri-bin partitions by BDE(J1e, W1c)

A random cell’s spectra is partitioned by the BDE(A, B) of training class sample pair (A, B). A sequence
of binary decisions is generated per spectrum, e.g. a(b) · · · a(b) where a(b) is a or b. A sequence is binned by: (i)
if decisions are unanimous, spectrum (πi; a · · · a) is assigned to bin (xObj; a); or (ii) (πi; b · · · b) is assigned to bin
(xObj; b); otherwise if decisions are mixed, (iii) pixel-spectrum (πi;mix) is assigned to bin (xObj;x). A tri-bin
partition of xObj = {πi; t-sequence} is a union of three subsets: xObj = (xObj; a ∪xObj; b ∪xObj;x). TABLE
1 shows training class cell partitions generated by their own BDE(J1e, W1c). Relative bin size is the ratio of
bin members to sample size and is another adjustment for size bias.

5.2 Partition Proximity Measure

Table 2. Training class samples (J1c) and (W1c) partition proximity.

A χ2-statistic (Eq. 4) measures a relative difference (proximity) between two cell partitions A and B having
k bins and Ai and Bi sizes of respective ith bin12

χ2(A−B) =
k∑

i=1

(
√
B/AAi −

√
A/BBi)

2/(Ai +Bi). (4)

Other goodness-of-fit statistics for discrete multivariate data may yield better results, e.g. if bin sizes are small.13

The relative proximity of training class samples (J1c) and (W1c) is shown in Table 2.
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5.3 Learning and cell category accuracy

Learning may improve training accuracy by resampling a known test population. Many algorithms focus on
binary decision accuracy, but this is not necessarily the only, or preferred, way to accurate cell classification.
Similar binary decisions may result from intra-cellular light scattering characteristics common to other classes.

Class knowledge is generalized from vectors (spectra) and binary decisions to objects (cells) and categories. A
category is defined by test cells relative proximity to a training class sample pair. A test object (tObj) relatively
closer to training class sample S(A) than to S(B) is categorized (tObj : cA). The cell category condition can be
stated : if ∆χ2[tObj|S(A)− S(B)] > 0, then (tObj : cB), else (tObj : cA), where

∆χ2[tObj|S(A)− S(B)] = χ2[tObj − S(A)]− χ2[tObj − S(B)]. (5)

A special case is if a test cell is a training class sample: if tObj = S(A), ∆χ2[S(A)|S(A)−S(B)] < 0⇒ S(A) : cA.
Thus, a training class sample, if used as a test cell, is consistently associated with its own category. An object
represented by a set of vectors has been considered using kernel methods and distribution modeling, however only
the special case of an object containing a single vector was developed for monochromatic images or handwriting
recognition.14 A broader interpretation of objects beyond sets of vectors has been used with kernel methods and
applied to video sequences, but did not develop a dimensional reduction or error analysis.15

Before, an equivalence relation compared training class and binary decision per spectrum. A test population
characterized as known meant the equivalence relation was evaluated as true or false per measurement vector
(cell spectrum). Now, a generalized equivalence relation compares training class and category per spectral
object (cell). The logical equivalence between test class and category is evaluated: if in closer proximity to their
associated training class, known test cells are categorized true. For example, if a class A test object (tÔ ∈ A)
is in closer proximity to training sample A than B, its assignment to category (tÔ : cA) is true. A generalized
category accuracy is the ratio of cells categorized true to total test population. If category accuracy is acceptable,
the BDE is used to classify random cells. Otherwise, learning is executed with another training sample selected
from a test population.

Figure 9. Test populations categorized by training class samples: S(J1e) and S(W1c): (left) Jurkat and (right) Wbc cells.

A learning example uses training class samples Jurkat S(J1e) and Wbc S(W1c). Relative proximity to the
pair is plotted as the abscissa in Fig. 9 for test cells Jurkat {tJur} (left) and Wbc {tWbc} (right). The training
class cell S(J1e) [solid box, F ig. 9 (left)] is in relative proximity χ2[S(J1e) − S(W1c)] = 102 to training class
cell S(W1c) [bold circle, F ig. 9 (right)]. Accurate Jurkat test categorization (∆χ2 > 0) occurs with all cells
closer to training class sample S(J1e).

A need for learning is shown in Fig. 9 (right). The Wbc test population {xWbc} is accurately categorized
except for a cell located on an image boundary with a relative proximity ∆χ2(aWbc|S(W1c) − S(J1e)] = 67.
Boundary objects can be excluded, however the cell fragment is retained as a marker. Various learning methods
can be used to sample a test population. If there are N A-class test objects and M B-class test objects, one
approach is to evaluate all N ·M pairs. The category error in Fig. 9 (right) is eliminated by selecting Jurkat
test sample cell (J1c) located at ∆χ2[J1c|S(W1c)− S(J1e)] = 25, Fig.9 (left).
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5.4 Binary class regions

Binary class regions are defined by two test populations. A region is determined by test cells relative partition
size and proximity to the training class pair. Unknown cells {xCell} are classified by comparing random cell
partitions size and relative location to the binary class regions. However as no truth condition can be evaluated
to measure category accuracy, a cell may be classified, but with an accuracy evaluated only a posteriori.

Figure 10. Class regions: (a) Wbc and (b) Jurkat. Rbc cells serve as unknowns.

Figure 11. Class regions: (a) Wbc and (b) Rbc. Jur cells serve as unknowns.

Test sample populations bounded by convex hulls (dashed lines) define class regions (a) Wbc and (b) Jur,
Fig. 10. The marker boundary cell in Fig. 9 (right) is located at ∆χ2 = −90 outside the Wbc class region. The
unknown objects are located in a merged relative proximity view where partition difference is referenced to the
abscissa origin, e.g. training class samples are located at: x = +177 (J1c) and x = -177 (W1c). Rbc cells are
measured outside the class regions and thus are classified (Rbc : X), an unknown class, (: X = [Not Wbc and
Not Jurkat]).

Class regions (a) Wbc and (b) Rbc are defined by respective test populations and training samples (R1f, dark
diamond) and (W1c, dark circle) with Jurkat cells {xJur} the unknown population, Fig. 11 (left). Figure 12 plots
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class regions derived from Jurkat t(J1e) and Rbc t(R1f) test cells. The relative proximity χ2[S(J1e)−S(R1f)] =
259 corresponds with training class cells located at: (J1e) = −259 (solid purple square) and (R1f) = +259 (solid
red diamond). Boundary cells and Rbc cell clusters are excluded from the cell region in this case. In Figs 10 - 12
unknown random object populations are located exterior to class regions generated by three training class sample
pairs and corresponding test populations. The cells serving as unknowns are distinct from the test populations,
which may be inferred as an accurate classification a posteriori.

Figure 12. (left) Jurkat and Rbc class regions, (right) Rbc cells in a dark field-of-view.

5.5 Multi-classification

Figure 13. Spectral object multi-classification with a common partition.
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It can be useful to have many training class samples. Hundreds of clusters of differention exist for leukocytes16

and there are a number of medical imaging applications.17 Availability of multiple cell types can generate new
insights and greater accuracy.

Table 3. Pixel spectra common blocks for 3 Classes and 3 Binary Decisions

Spectral object multi-classification is scalable to K cell samples, Fig. 13. A random cell common partition is
generated by

(
k
2

)
BDE’s, which generate per spectrum a tri-bin sequence of length K(K − 1)/2. Table 3 shows

example block assignments where a tri-bin a or b is associated with unanimous binary decisions and tri-bin (x)
= (not a) and (not b) outcome. A vote counts number of times a tri-bin occurs per spectrum, which is assigned
a common block according to highest number of votes. There are at most (K − 1) tri-bin votes per spectrum.
For vector (πj) a unanimous BDE outcome of tri-bin partition (a) occurs twice and so provides two votes for
common block (a). A single vote block (x1+x2+x3) identifies member vectors not having any unanimous binary
decisions. A (1vote.mix) partition block contains other single decision combinations. A common partition block
size is the number of referenced cell spectra.

Table 4. Cell partitions by binary decision ensemble (columns) and training sample (rows).

A random cell is located in a tri-class region. Two regions are defined by test cell common partitions relative
proximity and size to a training class sample common partition pair, and a third unknown class region by a
[(not A) and (not B)] region outside the first two. As a result three tri-class regions are generated per BDE. A
cell located in a tri-class region

(
k
2

)
times results in a tri-class sequence of length K(K − 1)/2. A cell is assigned

at least one of (K + 1) classes by counting a tri-class occurrence frequency.

As an example, the three training samples of Table 4 are employed with a fourth adenocarcinoma population
{xH1975} serving as unknowns. A common partition relative size and proximity to training class sample common
partition pairs is measured with Eq.(4). Table 5 shows the three training class cell common partitions and their

Proc. of SPIE Vol. 10890  108900H-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Apr 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



relative proximity. Fig. 14 is a metric view of training class pair separations (in-plane) and relative bin size (out-
of-plane axis-a). Common partitions tend to increase training sample pair separation, e.g. relative proximity
differences 177, 269, and 259 increase to 266, 318, and 302 respectively.

Table 5. Training class common partitions and their relative proximity.

Figure 14. Training sample common partition proximity for (K=3) classes.

5.6 A new view of cell structure

Cell structure is characterized by a combination of spatial and spectral features produced from elastically scat-
tered visible light. Spectral image microscopy of an unstained red blood cell (Rbc) superposes phase object
characteristics on the Gaussian image, Fig. 15. Rayleigh resolution is 0.44 ∼ 0.54 [µm] at 440 [nm] wavelength
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for dark field apodization and bright field imaging respectively.18 The 6.8 [µm] Rbc cell diameter bounded by
the box is estimated from the dark fringe boundary in the bright field image. The reddish interior corresponds
to an order of magnitude greater molar extinction coefficient at 440 [nm] compared to 620 nm.19 The biconcave
cell results in a bright 2x2 pixel central region. Partially coherent illumination by unscattered light emitted in a
relatively narrow 6o emission semi-angle from the thin central region may explain the nature of the interference
rings. The diffraction rings extend to ∼ 11.2 [µm] diameter at λ = 440 [nm].

Figure 15. Rbc cell spectral image features, 0.4 [µm/pixel])

Unique spectra determined from the cell partitions reveal a characteristic spatial distribution for each class.
Figure 16 shows unique intra-cellular spectra (white boxes) labeled U(Rbc), U(Jur), and U(Wbc) in TABLE 5
associated with unanimous decisions for a respective class.

Figure 16. Unique pixel spectra: (left) Jurkat (J1C); (middle) Wbc (W1C); (right) Rbc (R1f) with large 6.8µm white
square enclosing the first diffraction zero. 1 pixel length= 0.4 [µm]. RGB images at 620,545,440 [nm].
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5.7 H1975 as an unknown cell type

Figure 17. Rbc and Jur test cells and H1975 cancer as unknown cells.

Figure 18. Wbc and Jur test cells and H1975 cancer as unknown cells.

Figure 19. Wbc and Rbc test cells and H1975 cancer as unknown cells.

Unknown cells can be classified, albeit with an accuracy inferred a posteriori. As an example, non-small cell
lung cancer adenocarcinoma cells (H1975)20 are introduced as unknown spectral objects and compared to the
Table 5 training class samples. A linked proximity view provides a convenient alternative to display multiple
binary test classification regions. Training class samples S(A) and S(B) and a random object xObj with bins a
and b are related by: χ2[xObj−S(A)] for xObj, bin = a and χ2[S(A)−S(B)]−χ2[xObj−S(B)] for xObj, bin = b.
A linked AB-view displays a training class sample A located at the x-axis (abscissa) origin and training class
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sample B is plotted as a relative proximity to A. H1975 lung cancer cells, serving as unknowns, are widely
separated from the Rbc, Wbc, and Jur test populations, (right): Figs. 17 - 19. Note the expanded abscissa scales
required with H1975 cells as a result of relatively distant proximity compared to training class sample pairs.

6. CONCLUSION

Spectral object classification uniquely characterizes heterogeneous cell structure and is scalable to large numbers
of types. Small samples of erythrocytes, leukocytes, and Jurkat and H1975-adenocarcinoma have been accurately
classified at 0.4 [µm] resolution with unique pixel-spectra identified. Spectral image microscopy with visible light
elastic scattering makes feasible label-free blood and cancer cell identification.

APPENDIX A. COVARIANCE MATRIX STABILITY CONDITION

A matrix stability condition is developed to determine a class sample size dependent optimal dimensionality for
binary decisions, which use the Eq. 3 linear functional and covariance matrix. LU decomposition is a standard
method to determine the existence of a matrix inverse, [12, pp.48-54]. If an inverse exists, it is nonsingular and
has a nonzero determinant. If a matrix is singular and LU decomposition fails other approaches must be used.
Singularity resolution involves handling near rank deficiency and ill-conditioned behavior as part of effective
dimensional reduction with adequate tolerancing of numerical errors.

Singular value decomposition (SVD) is a technique to diagnose a matrix singularity [12, pp.65-69]. Scope
is reduced when evaluating a symmetric p-by-p covariance matrix C = CT with transpose CT . The singular
value decomposition (SVD) of a covariance matrix is C = UΣVT with orthogonal matrices U = [u,1 · · · , up]
and V = [v1, · · · , vp] ∈ Rpxp; ui and vi ith left and right singular vectors, and the diagonal p-by-p matrix
Σ = diag(σ1, · · ·σp) contains singular values [21, pg.70]. The inverse is C−1 = V[diag(1/σ1, · · · 1/σp]UT [12,
pp.69].

A condition number specified as

κ(C) = ‖C‖‖C−1‖ ≥ ‖CC−1‖ = 1 (6)

uses a matrix norm, which satisfies the submultiplicative property ‖AB‖ ≤ ‖A‖‖B‖. A convention is that
κ(C) = ∞ for singular C. If κ(C) is large, then C is ill-conditioned. Frobenius and p-norms satisfy this
inequality and other bounds, which is convenient as the norms are then equivalent, [21, pp. 56-57]. As a result
a condition number is the ratio of largest to smallest singular value, [12, pp. 69, SVD of a Square Matrix].

SVD space decomposition is Rank(C)+Nullity(C) = p where Nullity(C) = nullspace dimension. If r = rank
of C = dim(range(C)) < p then C is rank deficient. A rank deficient singular matrix has null space components
equal to zero or numerically so small, values may be dominated by roundoff error. To avoid ill-conditioned
behavior one approach solves a pseudoinverse

C−1 = V[diag(1/σ1, · · · 1/σr, 0, · · · , 0)]UT (7)

for σ1 ≥ · · · ≥ σr > σr+1 = · · ·σp = 0 [21, pg.257]. A corresponding vector with reduced dimensionality may
then be calculated, [12, pp.69-70]. However there may be numerical difficulties where rounding errors or fuzzy
data can make rank determination a nontrivial exercise, [21, pg.72].

A difference between SVD matrix factorization and eigendecomposition disappears if a symmetric covariance
matrix is used, [12, pp. 569-570]. An ordered set of singular values σr may then be handled similarly to the
eigenvalues. Computing eigenvalues of a general mth order matrix typically is an iterative process, since Galois
theory and the Abel-Ruffini theorem state the general polynomial for degree m ≥ 5 is not solvable by radicals, as
there is no algebraic solution to the characteristic polynomial, [22, theorem 16, pg. 299] and [23, pp. 37-38]. A
Jacobi method diagonalizes a covariance matrix by a sequence of orthogonal similarity transforms. A feature is
superior accuracy, [23, pp. 43] compared to faster strategies, e.g. Givens and Householder methods [12, pp.570-
589]. However, the termination of an iterative method depends on numerical tolerances and roundoff errors. One
approach is to use perturbation theory to study eigenvalue sensitivity, [21, pg.320].
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Alternatively, a relatively simple method is developed here based on covariance stability. A relationship
between sample size and dimension is sought that ensures a well conditioned covariance matrix. An error
tolerance helps resolve numerical difficulties inherent with iterative SVD and eigendecomposition techniques.
Computational precision sets a lower bound on a tolerance δ where rank is determined from a spectrum of
principal values contained in Σ , or eigenvalues if that approach is taken, such that

σ1 ≥ · · · ≥ σr−1 > δr > σr+1 = · · · = σm = 0. (8)

The problem may then appear in two forms. If a tolerance is set too large so that rank is reduced, then useful
results may be lost. Alternatively, if rank is too large, a singularity may be removed but the covariance inverse
remains ill-conditioned. From inequalities (8) a covariance condition number is

κ(C) ∼= σ1 /δr. (9)

Using Eq. 7 the covariance pseudo-inverse condition number is

κ(C−1) ∼= (1 /δ
′

r) /(1 /σ1) = σ1 /δ
′

r. (10)

The two tolerances δr and δ
′

r may differ as a result of numerical noise and iteration method. Dimensionality
or sample size may be adjusted using the condition number as a guide. Unfortunately there is little correlation
between the determinant of a matrix (detA) and its condition number, [21, pg.82, Determinants and Nearness to
Singularity]. As a result, at least in part, condition estimation evolved as a collection of refined algorithms based
on norm bounds, [21, pp. 128-132]. However these may be relatively complex to implement and a simpler method
is given to determine a well conditioned covariance inverse with maximum rank, which include the tolerances in
Eqs. 9, 10. Using a tolerance δr as an estimate of the smallest non-zero value with r = rank of C, the covariance
determinant is a product of diagonal components,

det C ∼= σ1 · · ·σr−1δr. (11)

The determinant of the covariance inverse is

det C−1 ∼= 1 /δ
′

r · 1/σr−1 · · · 1 /σ1. (12)

A relation between the covariance and its inverse in terms of determinant and condition is given by combining
Eqs. 9 - 12

det C · det C−1 ∼= κ(C−1) /κ(C) ∼= δr /δ
′

r. (13)

A norm-independent and computationally convenient covariance stability condition can be specified to first order
in the identities C · C−1 = 1 and detA · detB = det(A · B), by an error tolerance εc,

det C · det C−1 ∼= 1± εc. (14)

The maximum rank may then be determined by evaluating Eq.14 for a covariance of a given dimension.
A dimensional bound is set by a tolerance εc with determinants evaluated as a product of singular values or
eigenvalues. A tolerance lower bound εIEEE has 15 decimal digit precision set by the IEEE 754-2008 floating
point specification for 64 bit binary double precision. The tolerance εc is set above the IEEE floating point
precision to avoid numerical noise, εIEEE < εc < 1. Comparing Eqs. 13, 14 results in ±εc ∼= ∆ /δ where
∆ = δr − δ

′

r. As an example, a minimum detectable difference ∆ ∼ 10−14 and a five decimal digit tolerance
εc ∼ 10−5 implies a δ ∼ 10−9 lower bound on the singular values.
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